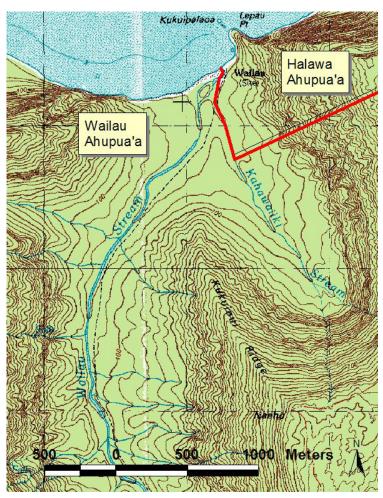

The Development of Loʻi Agriculture: Risk, Effort, and Production Output in Wailau Valley, Molokaʻi

Windy K., McElroy

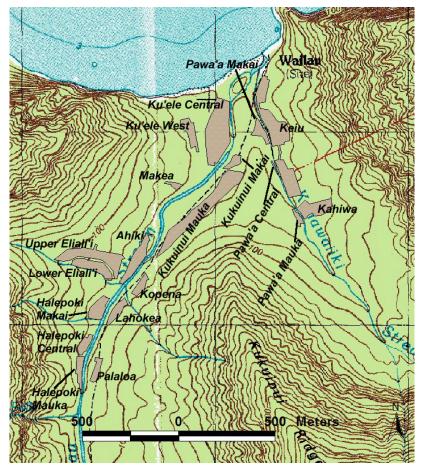
Introduction

My paper summarizes the work I did for my dissertation, which looks at risk, effort, and production output in the development of irrigated agriculture in Wailau, incorporating the 19 radiocarbon dates I got for the valley.



Wailau is the largest of four valleys on the wet windward coast of Moloka'i, that stretches from Hālawa Valley on the east to Kalaupapa Peninsula on the west. Wailau Valley was a major area of taro production in the pre-contact era until the 1930s when the valley was abandoned.

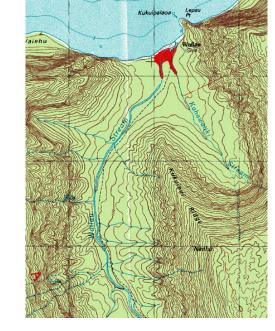
Wailau is made up of a smaller broad valley on the east and a deeper valley on the west, with two major streams flowing down — Kahawai'iki Stream and Wailau Stream.

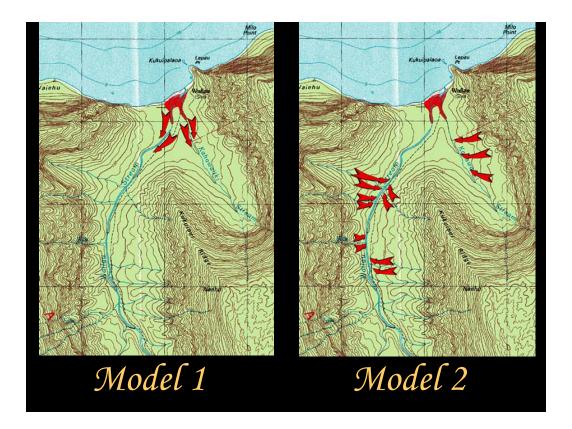

A series of intact loʻi forms an agricultural system distributed across almost the entire 936ha valley. Trails, habitation remains, and ceremonial structures are part of the cultural landscape as well.

A unique thing about Wailau is that the valley is made up of two *ahupua'a*. The large western portion comprised Wailau Ahupua'a, while a small strip of land on the east was part of Hālawa Ahupua'a, which extends east all the way to Hālawa Valley.

Wailau very remote - there are no roads going in or out, no electricity, no running water, no cell phone service. We get to the valley by boat and camp out the whole time we're there.

My work focuses on the lo'i systems of Wailau and I surveyed more than 100 ha of the valley and identified 19 lo'i complexes from the coast to approximately 2½ km inland. This map shows the names of the 19 identified lo'i systems.


Research Design


Research Design

- What is the sequence of development for lo'i systems?
- What factors were important in choosing locations for the earliest systems?
- Two models of agricultural development
 - effort
 - risk
 - production output

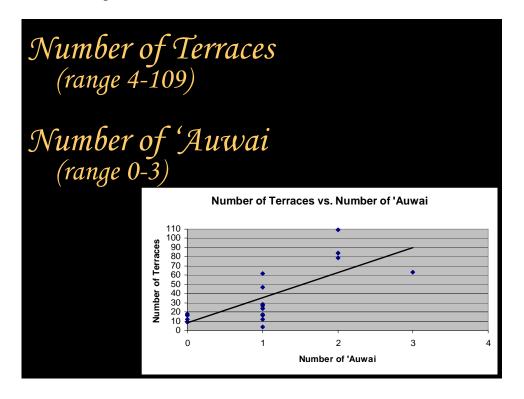
I'm asking two basic questions with this research: 'What is the sequence of development of the irrigated agricultural systems in Wailau Valley?'; and 'What factors were important in choosing locations for the earliest systems?'. There are two general models for wetland agricultural development in Hawai'i, and I wanted to see if either model was applicable to Wailau. The models involve factors of effort, risk, and production output, and both start with the earliest fields near the coast, where marine resources can be easily exploited, and where fields can be constructed in naturally-occurring low, wet spots with

minimal effort.

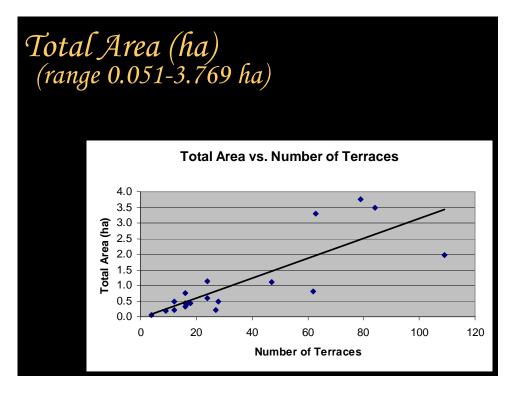
From there, the first model sees expansion starting along the main streams where the largest areas would be next developed. Agricultural complexes on the large flats along the main streams would be more difficult to build and maintain because of their size, and they would also be more risky, because of the danger of flooding. The returns, however, are equally large.

The second model sees the earliest expansion out of the valley bottom, along side drainages and shorter watercourses. Fields would be smaller here, easier to maintain, and less subject to flooding. These systems on the slopes would require the least effort to build and maintain and involve lower risk, but output would be less than larger fields near the main streams.

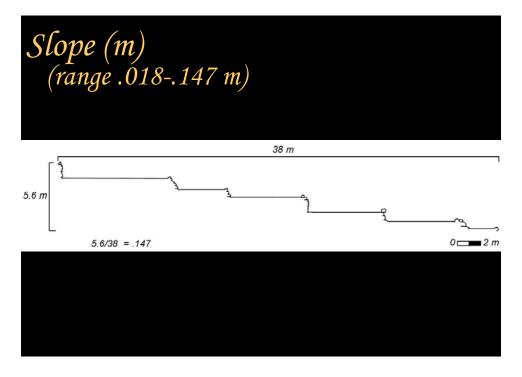
So, in short, this study will determine if fields were extended directly inland from the coast to optimize production despite increasing effort and greater risk; or if farmers first extended their fields to the valley slopes, which involved less risk and effort to construct and maintain terrace systems but produced lower crop yields.

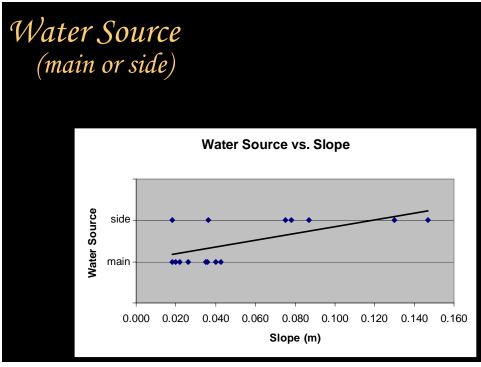

Lo'i Attributes

To test which model of agricultural development applies to Wailau, the first thing I did was to look at these attributes for the different lo'i systems: number of terraces, number of 'auwai, total area of a complex, the slope of the land that the lo'i is on, water source, and elevation.


Lo'i Attributes

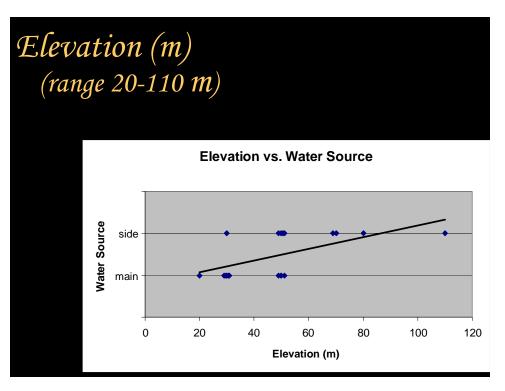
- number of terraces
- number of 'auwai
- total area
- slope
- water source
- elevation

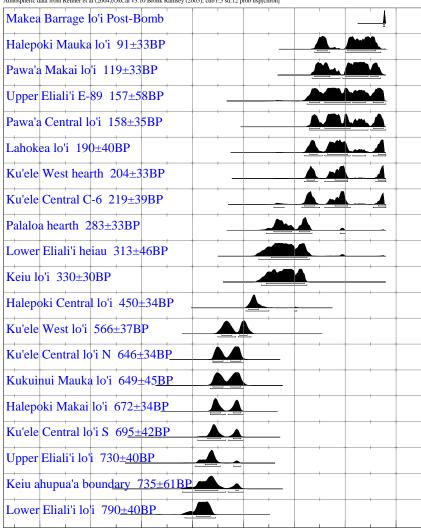

The number of terraces within each complex ranged from 4 to 109, and the number of 'auwai ranged from none to 3. In this graph, each dot represents one lo'i system, and you can see that the complexes with fewer terraces had fewer 'auwai.



Complexes ranged in area from .051 ha to 3.769 ha. The smallest systems tended to encompass the fewest terraces. This indicates little variability in the size of individual terraces between the systems.

Slope was calculated by dividing the total height of a *lo'i* complex by its total length. Slope ranged from .018 to .147 m.

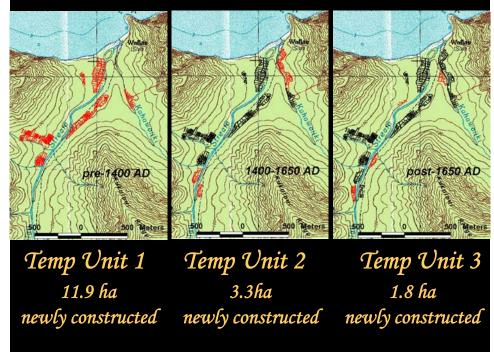




The water source attribute refers to the stream that irrigates loi each system. Complexes were fed by the two main streams, Wailau and Kahawai'iki, and various secondary drainages, referred here as side streams.

Complexes along the main streams tended to be more gradually sloping than those along the side tributaries.

The final attribute elevation. was This ranged from 20-110 m above sea level. More low elevation complexes were watered by main stream, and more high elevation ones were fed from side streams. This makes sense, as there is a smaller gradient along the main streams than the side drainages.



Dates

I got 19 AMS RC dates for the valley, and they range from 790 BP, or about AD 1200, to modern. So the earliest dates are at the bottom and they get more and more recent toward the top. Aside from the lo'i systems, I dated several nonagricultural features, including two hearths, a habitation terrace near the coast, [one of three heiau recorded for the valley, and the ahupua'a boundary wall, which doubled as a *lo'i* terrace wall.

600AD 800AD 1000AD 1200AD 1400AD 1600AD 1800AD 2000AD Calendar date

The dates for the lo'i systems fall into three temporal units: earliest the before AD 1400. the next is from AD 1400-1650. and the most recent is after AD 1650. These maps show the lo'i complexes that would have been present in the valley during each time period. The systems in red are the new ones that were constructed during that temporal unit, with the values at the bottom showing their area. Clearly, the largest area of *lo'i* was constructed early on, relative to later expansion.

Agricultural Development

Effort, risk, and production output are the critical factors in the two models of agricultural development. The models link these 3 factors together, with the complexes requiring the greatest effort and involving the most risk also producing the most output.

Effort refers to the amount of labor it takes to build and maintain a field. Effort is reflected by the size of a *lo'i* complex, the number of terraces within the complex, and slope of the system. Based on the values for these attributes, I devised two categories for effort: *High* and *Low*. 7 of the 19 complexes were classified as *High*, and 12 were *Low*.

Agricultural Development Effort: amount of labor to build/maintain fields • size • number of terraces • slope High Effort: 7 complexes Low Effort: 12 complexes

Risk refers to the likelihood of crop failure or lower than expected production at different locales. Flooding is the greatest risk for irrigated agriculture in a wet valley such as Wailau, and this is directly affected by water source and elevation. Complexes fed by a side stream would be less prone to flooding than those watered by a main stream, while those located at lower elevations would be more subject to flooding than those at higher elevations. Two categories of risk were generated: *High* and *Low*, based on values for water source and elevation. 10 of the complexes were classified as *High* risk, and 9 were *Low*.

Agricultural Development

Risk: likelihood of crop failure/low production

- water source
- elevation

High Risk: 10 complexes Low Risk: 9 complexes

Production output refers to the amount of taro a complex can potentially yield. Number of 'auwai and total area affect crop yields, and were therefore used as indicators of production output. Two categories of output were generated: *High* and *Low*, with 9 complexes falling into the *High* yield group, and 10 classified as *Low*.

Agricultural Development

Production Output:

amount of taro a complex can potentially yield

- number of 'auwai
- total area

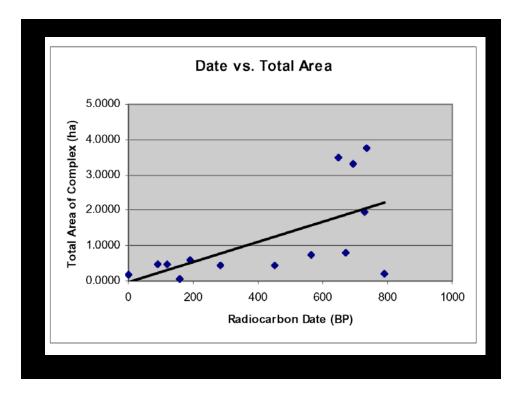
High Output: 9 complexes

Low Output: 10 complexes

	High Output	Low Output
High Effort	6	1
Low Effort	3	9

Effort was related to production output, with more *High* effort complexes categorized as *High* output, and more *Low* effort complexes falling into the *Low* output group. So large amounts of effort were invested in fields that could produce high yields.

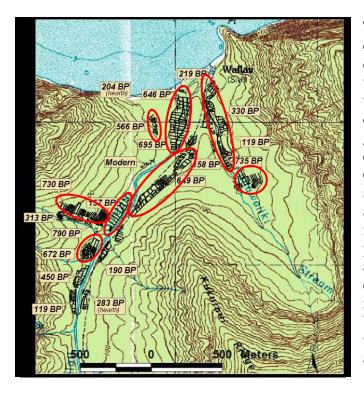
	Temp Unit 1	Temp Unit 2	Temp Unit 3
High Effort	6	0	0
Low Effort	1	2	5


Effort and production output showed the strongest relationship with the temporal units, with all of dated High effort complexes falling within Temporal Unit 1, and all but one of the dated Low effort complexes falling within Temporal Units 2 or 3. Thus, the most effort expended on the earliest

systems, and less effort was invested in the complexes that were constructed later in time.

	Temp Unit 1	Temp Unit 2	Temp Unit 3
High Output	6	0	1
Low Output	1	2	4

The temporal units are also clearly related production output, with the High output complexes occurring earlier in time than those offering Low output. Note that the high yielding complexes were not necessarily built out completely during the first temporal unit in which they established. Nevertheless, farmers were clearly assessing


likelihood of expansion of the terrace systems when they first selected areas for cultivation.

The raw data that shows total area corresponds well with the radiocarbon with dates. largest the loi constructed earliest time.

This analysis strongly suggests a pattern of agricultural development in which production output was a major consideration in initial *lo'i* construction, and large amounts of effort were invested in *lo'i* systems that could produce high yields.

Conclusion

The goal of this study was to evaluate two models of agricultural development: one in which fields were extended directly inland from the coast to optimize production despite increasing effort and greater risk. another and contending that farmers first extended their fields to the valley slopes, which involved less risk effort and to construct and maintain terrace systems produced lower crop yields. Effort and production output determined to be the critical factors in the timing of lo'i construction in Wailau, which is consistent with first model, the although agricultural development was not as simple as the two models suggest. The high output systems were not all found on the valley bottoms as originally assumed. They were found throughout the valley – in the lowlands along the main streams, inland along the main streams, and on the valley slopes watered by secondary drainages. Farmers first took advantage of any area capable of supporting a high producing *lo'i* system, regardless of risks of flooding or the amount of effort needed to construct a system or transport products to the coast.

This could be a tactic to spread out the risk, to place early fields in various locations so that if *lo'i* in one location are destroyed by flooding, those in other areas might still be viable. Spreading out the earliest fields might also be an attempt to gauge the potential of each location, to test how much taro can be produced and what risks are involved in the different areas.

After these large, high-yielding complexes were established, smaller *lo'i* systems were built, until every cultivable tract of land was under production. These small complexes are good examples, in which a tiny bit of flat land along a stream was converted into a *lo'i* system late in time.

Dating of non-agricultural features provided useful information as well. The *ahupua'a* boundary was established early in time, when control of the large agricultural areas was of utmost importance. The *heiau* was constructed later, possibly at a time when population was growing and available space for cultivation was becoming increasingly limited. This would be a time when agricultural ritual would play a critical role in the life of the Wailau people.

In sum, the cultivation of irrigated fields began in the Thirteenth Century AD in Wailau. At this time, two distinct communities were established in the valley: Wailau Ahupua'a on the west and Hālawa Ahupua'a on the east. Extensive fields were constructed early on because of their potential to yield large amounts of taro. Soon the entire valley was under irrigated taro cultivation, and *lo'i* construction continued into the historic era, until unfavorable economic conditions and a devastating flood forced the last remaining farmers to abandon the valley. Today the fields of Wailau endure, remnants of a rich agricultural past whose story is just beginning to be told.